Confidence intervals around Pearson r's

Re: Loftus, G.R. \& Loftus, E.F. (1988). Essence of Statistics (2nd Edition). New York: McGraw Hill.

Mea Culpa

The explanation of confidence intervals in the book (p. 460) is wrong. It turns out to be more complicated. Here's how it works.

General

First, unlike confidence intervals around means, confidence intervals around Pearson r's are not symmetrical. This is because the distribution of r is itself skewed rather than symmetrical (for example, with a high r , say $\mathrm{r}=0.95$, the actual population correlation couldn't be any higher than 1.0, but it could be substantially lower).

Correct Formulas

The confidence interval around a Pearson r is based on Fisher's r-to-z transformation. In particular, suppose a sample of n X-Y pairs produces some value of Pearson r. Given the transformation,

$$
\mathrm{z}=0.5 \ln \left(\frac{1+\mathrm{r}}{1-\mathrm{r}}\right) \text { (Equation } 1 \text {) }
$$

z is approximately normally distributed, with an expectation equal to

$$
0.5 \ln \left(\frac{1+\rho}{1-\rho}\right)
$$

where r is the population correlation of which r is an estimate, and a standard deviation of

$$
S=\sqrt{1 /(n-3)}
$$

Therefore, having computed an obtained z from the obtained r via Equation 1, a confidence interval can easily be constructed in z-space in more or less the usual manner as:

$$
\mathrm{z} \pm \mathrm{S} x(\text { criterion } \mathrm{z})
$$

where the criterion z corresponds to the desired confidence level (e.g., 1.96 in the case of a 95% confidence interval). The upper and lower z limits of this confidence interval can then be transformed back to upper and lower r limits.

An Example

Suppose that a sample of $\mathrm{n}=20 \mathrm{X}-\mathrm{Y}$ pairs produces a Pearson r of 0.80 , and a 95% confidence interval is desired. The obtained z is thus

$$
0.5 \times \ln [(1+.80) /(1-.80)]=0.5 \times \ln (1.80 / .20)=1.099
$$

which is distributed with a standard deviation of

$$
\sqrt{1 /(20-3)}=0.243
$$

The upper and lower confidence interval limits in z -space are therefore

$$
1.099+(.243)(1.96)=1.574
$$

and

$$
1.099-(.213)(1.96)=0.624
$$

To translate from z-space back to r-space, it is necessary to invert Equation 1, It is easily shown that such inversion produces,

$$
\left.\mathrm{r}=\frac{\mathrm{e}^{2 \mathrm{z}}-1}{\mathrm{e}^{2 \mathrm{z}}+1} \quad \text { (Equation } 2\right)
$$

The upper and lower confidence-interval limits may then be computed from Equation 2:

$$
\text { upper limit }: \mathrm{r}=\frac{\mathrm{e}^{2 \times 1.574}-1}{\mathrm{e}^{2 \times 1.574}+1}=0.918
$$

and

$$
\text { lower limit : } \mathrm{r}=\frac{\mathrm{e}^{2 \times 0.624}-1}{\mathrm{e}^{2 \times 0.624}+1}=0.554
$$

Thus, the 95% confidence interval around the original obtained r of 0.90 ranges from 0.554 to 0.918 .

Picture

The situation described in the example above is depicted in the figure below.

